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A TUTORIAL ON EM-BASED DENSITY ESTIMATION
WITH HISTOGRAM INTENSITY DATA

1. INTRODUCTION

Observed measurements from real-world physical systems are inherently stochastic
because of noise in the propagation medium and measurement system, and because
of random variabilities in the source-generating mechanism. Therefore, the essential
problem in estimation is not to identify the “true value” of a variable of interest (such
as spatial location or frequency), but to accurately characterize the probability density
function (PDF) associated with that variable of interest. In most real-world situations,
there are no such things as numbers; there are only distributions. This report is about
the characterization of those distributions.

The notion that data collection is an exercise in distributions is consistent with
the way observations of a physical variable are actually obtained. That is, observations
from digital processing systems are usually obtained by partitioning the range of the
physical variable into bins, and then measuring the energy that falls within each bin
(or, equivalently, the energy intensity associated with each bin). Characteristics of the
variable of interest are then inferred from the energy in these bins. The estimation error
in this inference process is related to the amount of probability mass (i.e., area under
the PDF) that is not encapsulated in the estimator. Thus, if the PDF governing the
spread of energy in the variable of interest is concentrated enough that “nearly all” of
the probability mass falls within a single bin, then viewing observed data as point mea-
surements (i.e., numbers) is a reasonable approximation. In situations where the PDF
has probability mass extending across several bins, however, such point approximations

can lead to significant information loss and often to bias.

This report examines histogranm estimation methods for representing intensity data
using parameterized PDF models, which provide a mechanism to significantly reduce
the information loss and bias that result from point approximations. While paramet-
ric density estimation has a long history, modern treatments of the problem usually
trace back to the seminal paper by Dempster, Laird, and Rubin [1], who, among other
things, applied the expectation-maximization (EM) algorithm for parameter estima-
tion with histogram data. McLachlan and Jones [2] extended the algorithun in [1] by
applying EM-based listogram estimation to static mixture densities. Luginbuhl [3],

Luginbuhl and Willett [4], and Streit [5] took this a step further by applying histogram-




estimation methods for dynamic mixtures within the probabilistic multi-hypothesis
tracking (PMHT) algorithm. The focus here is on the static-mixture histograms dis-
cussed by McLachlan and Jones [2], with the objective of providing enough detail to
allow these models and algorithms to be applied as they stand (e.g., in signal classifi-

cation applications) or extended for dynamic tracking contexts other than PMHT.

The organization of this report is intended to develop the concepts in increasing
detail, ultimately linking all aspects of histogram-based algorithms back to fundamental
statistical principles. The next section gives a high-level overview of histogram model-
ing, introducing the dominant issues and motivations. Sections 3 and 4 then provide
detailed mathematical developments of the algorithms. In particular, histogram meth-
ods for non-mixture distributions are developed in section 3, and these are extended
to mixture distributions in section 4. After a brief summary in section 5, a set of ap-
pendixes discuss supporting developments from optimization and distribution theory. In
addition to reviewing material that is important to understanding the algorithms, these
appendixes introduce much of the notation used in the body of the report. For exam-
ple, the discussion of the EM algorithm in appendix A provides a notational and logical
template that is used repeatedly when discussing histogram estimation algorithms in

sections 3 and 4.



2. OVERVIEW OF HISTOGRAM MODELING

The objective is to define statistical models that characterize the behavior of vari-
ables of interest (such as bearing or frequency) for some class of sources, a problem
that arises in a number of applications. For example, in maximum-likelihood classi-
fication (e.g., see [6]), PDF models are use to represent the behavior of the features
under various class hypotheses. The classifier decision boundaries are then found at
certain intersections of these class-conditional densities. As another example, proba-
bilistic tracking algorithms (e.g., see [7]) estimate parameters in a dynamic PDF model
at each time step. Regardless of the application, the goal when developing PDF models
is usually to provide a “best fit” for recorded data. However, most sensors do not pro-
vide direct measurements of the variables of interest (e.g., recorded data are not tagged
with location or frequency information). Information about the desired physical vari-
able is usually derived by transforming the received data (e.g., beamforming of spatial
array data or Fourier transform of time-domain data). An inlerent characteristic of
this transformation process is a partitioning of the variable domain into bins and the
generation of output values that correspond to these bins. These transform outputs are
usually further transformed to magnitude-squared, or energy intensity, data because
the original transform outputs are complex quantities whose phase is very sensitive to
noise. Therefore, PDF models are derived from data that take the form of energy as a

function of transform bins (e.g., energy as a function of beam or frequency).

The traditional approach for processing this type of intensity data extracts “point
observations” of the physical variable using a peak estimator, which selects one or more
values of the variable for which the intensity data are locally maximum. While simple
interpolation methods can significantly improve accuracy when signal energy extends
over just a few bins, this approach is inappropriate when the spread in the energy
extends over several transform bins. Histogram methods accommodate large intensity
spreads by employing distribution models with nonzero second (and possibly higher)

moinent characteristics.

This section introduces the basic ideas and representation abilities of the histogram
methods, as well as some of the issues that are addressed in the later sections. The first
subsection introduces the histogram approximation. The second discusses issues that
arise i the application of histogram methods to acoustic intensity data. The third
motivates the use of mixture densities in a histogram context, and the last subsection
discusses issues that arise when the range of available measurements does not fully cover
the range of the PDF.




2.1 HISTOGRAM APPROXIMATION

The histogram algorithms discussed here fall in the general class of parametric
statistical modeling techniques, where a PDF model p(z; ©) is used to represent the
energy distribution in the physical variable z of interest. The characteristics of the
model are governed by the parametric structure of the model and by the values in the
parameter set ©, which must be estimated from observed data. The difficulty with this
situation is that there are no direct observations of z. The parameter vector ® must
be estimated from the energy intensity data, denoted S = {s,: ¢ =1,...,L}, where
s¢ represents the energy in the fth bin and the collection of bins covers some range of

interest in the values of z.

A natural approach for overcoming this difficulty is to transform the PDF model
p(z; ®) into another valid PDF model p(S;®), allowing © to be estimated from the
intensity data. When a convenient mathematical form for p(S; @) is available, then
various optimization methods can be applied directly (e.g., Newton or other derivative-
based ascent method). Typically, however, the task of expressing S directly in terms
of © is highly nontrivial, and the resulting expression, if it can be obtained, is highly
nonlinear. For this reason, histogram methods employ an approximate model in which
p(z; ©) is used in conjunction with a multinomial approximation to represent the within-
bin and across-bin chara,cterig{t.,ics_ of the intensity .d'ata. Estimation algorithms are then
developed using an iterativé'EM approach. ‘A brief overview of the EM approach is
provided in appendix A, which establishes a template for the algorithm descriptions in

sections 3 and 4.

The use of the EM algorithm and multinomial approximation invokes a quantum
image of intensity data, analogous to photons of light energy. The variable z of interest
is considered to be a feature of the quantum particles, and the particles are assumed
to be sorted into bins according to the value of z associated with each particle. The
number of particles in each bin, denoted my for the £th bin, is referred to synonymously
as a histogram intensity, bin intensity, histogram count, particle count, or bin count.
The symbol my is used to emphasize the discrete nature of the histogram intensities,
in contrast to real-valued energy intensities. The relationship of PDF model, point

measurements, and histogram intensities is illustrated in figure 1.

For sensing modalities in which particle counts are actually observed (e.g., ionizing
radiation), or when there exists a one-to-one physical correspondence between energy
intensity s, and particle count m, (e.g., electromagnetic energy), the histogram approach

is generally valid. The only question in these cases concerns the appropriateness of the
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Figure 1: PDF, Measurements, and Histogram Intensities

The PDF (top) corresponds to a hypothetical scalar distribution. The
points measurements (middle) are synthesized by sampling from the
PDF, and these measurements are assigned to the warious histogram
bins with boundaries given by the vertical grid lines. The numbers of
point measurements in each bin correspond to the histogram bin inten-
sities (bottom). In practice, the point measurements are not observed
(indeed, they may not even exist), such that histogram methods must
estimate the PDF parameters from the intensity data. EM-based his-
togram methods postulate the existence of the point measurements in
order to obtain an easier optimization problem. These point measure-
ments are treated as missing data, however, and are marginalized from
the objective function during each EM iteration. Note that the point
measurements shown in this figure are one-dimensional in the horizon-
tal axis; the vertical spread in the measurements is included merely to
tllustrate the clustering of measurements.
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parametric form for p(z;©®). When using the histogram model for acoustic intensity
data, however, there is no physical mapping from s, to m,. The histogram model is

therefore inherently mismatched to the data in this case.

2.2 HISTOGRAM APPROXIMATION AND ACOUSTIC DATA

When applied to acoustic intensity data, the histogram model appears to exhibit
some insurmountable flaws, namely, the presumption of particles and point measure-
ments that don’t really exist, as well as the real-valued nature of the energy intensities
in a theory requiring integer count data. From the perspective of practical implementa-
tion, there are two factors that ameliorate these problems. First, the actual estimators
for the model parameters in © are obtained by integrating over the space of the point
measurements, whereby the point measurements are marginalized out of the likelihood
function. This marginalization takes place during the derivation of the estimators, such
that the point measurement z never appears in any computational algorithm. Sec-
ond, the parameter estimators end up being functions only of the relative intensities,
which are the individual bin intensities divided by the overall intensity. The numeri-
cal algorithms do not care if these ratios are formed from integer-valued count data or

real-valued energy data, since the ratio is, in general, real in both cases.

Now, just because the algorithm can be applied does not make it the right tool.
It is therefore of interest to take a closer look at a common special case, specifically
magnitude-squared discrete Fourier transform (DFT) data. The DFT forms the inner
product of recorded time-domain data with a set of complex sinusoidal basis functions.
Since, in practice, it is impossible to observe an infinite duration of the time-domain
signal, it is impossible to localize the energy to a single frequency point. The DFT
sample therefore represents the energy “in the vicinity of” a given frequency, such that
the partitioning of the frequency domain into bins is a natural result of the transform
process and the DFT samples correspond to the energy that is projected into each bin.
This projection of energy into DFT bins has the flavor of a histogram by definition,
although the histogram model takes this a step farther by assuming a quantization of
the DFT bin energies to take integer values, as if there were some basic unit of acoustic
energy (i.e., the acoustic equivalent of Planck’s constant) and the quantized integers
represent the number of these units that fall within each DFT bin. This quantization
implies a set of “synthetic” particles for each bin, and the number of these synthetic
particles is indeed a histogram count, even if it does not correspond to any known physi-
cal entity. The multinomial model at the heart of histogram methods then characterizes

these synthetic count data.
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The multinomial model starts out by treating histogram count data as statistically
independent Poisson processes. The histogram count for each bin is then modeled using
a conditional distribution, where the conditioning is on the total synthetic intensity in all
bins (the quantized version of the total signal energy). Now, the total synthetic intensity
is merely the sumn of the individual intensities, and a sum of Poisson processes is itself
a Poisson process whose expected value is the sum of the individual expected values
[8]. Furthermore, since the conditioning process is equivalent to dividing probability
mass functions, the multinomial model is effectively a series of ratios of Poisson mass
functions. Note that, while the synthetic intensities for the various DFT bins are initially
represented as independent processes, the bin intensities are not independent in the
multinomial model because of the conditioning on the total intensity. That is, all bins
affect all other bins through their contribution to the total intensity. Note also that
modeling the quantized intensities with a multinomial distribution provides a statistical
description that matches the first moment of the observed data but does not match any

higher moments.

Given the subtleties of tlie multinomial approximation, its appropriateness must
be evaluated on a case-by-case basis for different applications. That said, the histogram
approach provides a way forward in cases where the alternatives are intractable. For
example, an attempt to directly model the energy intensities would require a joint
multivariate exponential distribution over all of the spectral or spatial bins (i.e., a
joint distribution over easily thousands of variables, and more as resolution increases).

Estimation in such high-dimensional spaces is impossible in most real-world scenarios.

In many applications, the quantization of the bin intensities is implicit because the
algorithims depend only on the relative intensities. However, the quantization manifests
itself in a very explicit way in Bayesian contexts where a prior distribution is imposed.
The problem involves the relative weighting of the prior distribution and the nieasure-
nient likelihoods when estimating the posterior parameter estimates. Specifically, the
measurement likelihoods are weighted by the overall intensity of the bins (i.e., the total
number of particles in all bins). The more “measurements” there are, the more the
prior distribution is discounted. But when dealing with artificially quantized intensity
data, the overall inteusity depeunds on the unit energy associated with each particle,
which is itself a function of the quantization. The net result is that the quantization
unit becomes an explicit variable in the algorithm, making the relative weighting of the
prior completely dependent on an algorithm design parameter. If a coarse quantization

(i.e., a large particle energy unit) is assumed, then the synthetic particle counts will be

7




low and the prior distribution will dominate. If a very fine quantization (i.e., a small
particle energy unit) is used, then the apparent number of particles is very high and
the data overwhelm the prior. Indeed, in the limit as the quantization unit approaches
zero, the synthetic particle counts become infinite and the estimator effectively ignores
the prior distribution altogether, a problem that was observed by Streit in his work of
histogram PMHT [5]. This same issue will arise with any dynamic mixture scenario
in which the overall intensity varies with time, which includes jusf- about all practical

tracking applications.

As a final note, the dependence of the parameter estimators only on the relative
intensities also means that the estimators are invariant to the true overall intensity.
The degree of freedom introduced by this invariance allows the same model to represent
large variabilities in different realizations of the distribution. To illustrate this, figures
2 and 3 show examples of synthetic histogram data with different values of signal-to-
noise-ratio (SNR) and overall intensity. In figure 2, plots are shown with the same
value of SNR, but with different values of the overall intensities. In contrast, figure
3 contains plots with the same overall intensity but with varying SNR. While there is
significant variability in both cases, there is a subtle distinction. Low SNR generally
means that there is too much of the wrong kind of data (i.e., noise), whereas low overall
intensity indicates that there is too lttle of every kind of data. The histogram model

accommodates both cases equally well.

23 HISTOGRAM METHODS AND MIXTURE MODELS

The Gaussian_—signal-in;uniform-noise mixture model used to generate the above
examples was chosen because of the basic role that such models play when using his-
togram techniques. Specifically, mixture models proiride a convenient way to explicitly
model noise, which is necessary because histogram models are very data inclusive. This
is most easily seen by contrasting the histogram approach to an estimator that selects
the single maximal peak. When such a peak estimator is applied to data with highly
concentrated signal energy (e.g., narrowband signal spectra), a beneficial side effect is
provided in the form of signal cleaning. That is, in cases where the signal intensity is
largely confined to a single bin and that bin is correctly identified, most of the wideband
noise is eliminated with the omitted bins. The histogram éstimator, on the other hand,
throws away nothing. It must therefore explicitly account for the noise to minimize

noise-induced errors:
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Figure 2: Histogram Data as a Function of Overall Intensity

Image plots of histogram intensity data are synthesized independently at
each of 150 time points, with intensities at each time point obtained by
sampling from a two-component mixture model containing a Gaussian
signal in uniform noise. Samples are sorted into unit-width bins cover-
ing the range [—10,10]. The Gaussian component has constant variance
2 = 4 and a sinusoidally time-varying mean. The mixzture components
have constant probabilities 7, = 0.3 (for signal) and m, = 0.7 (for noise).
The ratio 7s/m, is the (wide-band) SNR. Intensity gram plots are shown
for overall intensities corresponding to 2500 point measurements per
sample time (top), 250 measurements per sample time (middle), and 25
measurements per time (bottom). 9
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Figure 3: Histogram Data as a Function of SNR
Histogram data are synthesized using the same model as in figure 2.
Here, the total number of measurements in all plots is K = 250 (as in
the middle plot figure 2). The signal-mode assignment probability varies,
with values 7, = 0.5 (top), 7, = 0.3 (middle), to 7, = 0.1 (bottom), giving
high, medium, and low signal-to-noise ratios, respectively.
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Finite mixture distributions, the topic of section 4, are ideally suited for noise
modeling because they provide a natural mechanism for dividing the energy between
a number of component distributions, one or more of which can be tailored to noise.
The “basic” PDF model for histogram methods is therefore the Gaussian-signal-in-
uniform-noise model. The use of a uniform noise distribution assumes that the data
has been pre-whitened, for example, using a spectral or spatial normalizer. If it is more
desirable to work with un-normalized data, however, a more sophisticated noise model
is required and can be achieved using a mixture of uniform or Gaussian components.
Multiple mixture modes can also be used to describe the signal energy itself, say for
data containing energy from multiple sources of interest or signals whose energy in the

variable of interest is inherently multi-modal.

2.4 TRUNCATED HISTOGRAM DATA

For a variety of reasons, intensity measurements may not be available for some
histogram bins. This can happen unintentionally, for example, when processing spectral
data from sensors with a limited frequency range. It can also occur intentionally, as
when data are truncated or subsampled to reduce comniunication and/or computational
requiremelts, or to isolate a phenomenon of interest. Figure 4 shows a hypothetical
exaimple of truncated histogram data. While this illustration focuses on histogram “edge
effects” where the missing bin intensities are on the outer edges of the distribution,
niissing intensity values can also occur in the “interior” of the histogram, say, due
to unintentional drop-outs in the sensor response or intentional subsanmpling of the
histogram bins. When the histogram bins do not fully cover the range of the PDF, the
histogram and its data are called truncated. This is in contrast to a complete histogran,

whose bins do cover the entire range.

If comiplete-histogram algorithms are applied to truncated-histogram data, then
a mismatch exists between the physical world (where a nonzero intensity is impossible
in some bins) and the mathematical world (where nonzero intensities are possible, but
none just happened to be observed in the data at hand). The size of the mismatch
depends on the probability mass under the density function in the truncated regions.
This probability mass may be very small, allowing the issue to be ignored in some
applications. However, when modeling physical phenomena whose energy can approach
the edges of the observable measurement space, or when sensor malfunction causes lost
sensitivity in some interior region, then the probability mass in the truncated region
can be significant. The EM algorithm is used to circumvent this problem by treating

the unobserved intensities as missing data.
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Figure 4: Truncated Histogram Data.

This figure shows data from the same scalar distribution as in figure
1, with the continuous PDF shown on top, the synthetic point measure-
ments shown in the middle, and the histogram bin intensities shown on
bottom. In this case, however, the histogram bins do not cover the entire
region over which point measurements can occur. The energy associated
with measurements falling outside of the observable region (i.e., outside
of the bold vertical lines) is not included in any histogram bin and is
therefore lost in the histogram model. The lost data are accounted for in
the EM estimation algorithm by utilizing an augmented set of missing
data. That 18, the EM algorithm treats as maissing data the intensity
values in the truncated region, in addition to the point measurements
that form the missing data in the case of a complete histogram.

12



The computational algorithm for the truncated histogram ends up being a simple
modification of the algorithm for the corresponding complete histogram. The theoretical
work needed to develop the algorithm, however, has a subtlety requiring careful analysis.
In particular, it is impossible to know the total intensity (i.e., the sum of the bin
intensities) when some of the bin intensities were not recorded, and the multinomial
distribution is well defined only when the overall intensity is given. The uncertainty
regarding the overall intensity requires the use of a negative binomial distribution and
its multivariate extension, the negative multinomial distribution. This extension is
discussed in section 3 and appendix C. Fortunately, the end result of that analysis is a
simple extrapolation formula for obtaining the expected values of the missing intensities.
The EM auxiliary function for the truncated histogram is then a linear function of
the missing intensities, such that the maximization step in each iteration of the EM
algorithm can be formulated in terms of the complete histograni. The algorithm then
operates on an extended data set in which the observed intensities are augmented with

expected intensities in the truncated regions.
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3. ESTIMATION FROM HISTOGRAM DATA

The remainder of this report focuses on the mathematical developments related
to histogram modeling and estimation. In all that follows, integer count data are as-
sumed available for each bin. That is, the issues cited in the previous section related to
converting from real-valued energy data to integer-valued histogram data are assumed
to have been dealt with appropriately.

As mentioned in the previous section, one key distinction among histogram meth-
ods involves wlether or not the histogram bins complete<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>